
MAD : Model Aggregator eDitor

Table of Content

MAD : Model Aggregator eDitor..1
Motivations...2
MAD Specification..2
Concepts..3

Configuring editing forms..3
Editing and backing up..3

Architecture...4
Life cycle..5

Implementation choices...5
Configuration...5

Integration into Eclipse..6
Query evaluators..6
Synchronising models and views...7
Dependency injections...7

Queries..8
OCL Evaluator...8
MAD Evaluator..8
Query and sub-query chains...9

Elementary query...9
Query chain..9
Sub-queries...9
Contextual variables...10
Customised evaluators..10

MAD in action...10
Widgets..11

A First Configuration...11
Simple Widgets..12
List Widgets...12
Navigation Widget...13
Widget for displaying Read-Only values...13
Flexible Widget..13
Selection of a specified template for the flexible widget elements..14
Widget Command..14
Other widgets...15

Xtext editor...15
Html link and Google MAP widgets..15

Layout..16
Validators...16

Layers..16
I18N..17
Utility of MAD and use cases..17
Conclusion...18

 MAD : Model Aggregator eDitor 1

Motivations

Passionate about the industrialisation of software development, we have been designing tools
for this domain for several years. We specifically work on communication protocol and
application generators for languages such as RPG, Visual Basic, C, PHP and Java.

Originally our generators were based on specific internally-designed models. Interested by the
arrival of new generation tools using EMF models, we chose to use UML for which an EMF
metamodel already existed. This first step towards EMF then led us to adopt Ecore for all of
our modeling requirements.

We have spent the last few months working on a new tool called ‘Verbose’. This is a
framework designed to create generators which use EMF models. The main idea behind
Verbose is to consider the templates used for the transformation of models into text as classes
and to be able to combine them using design patterns adapted from the OOP. Our first use of
Verbose was the creation of Verbose UML, a multilanguage application generator based on an
UML conception which is independent of the target platform. We have therefore chosen to
intensively use the different UML modelers available in the Eclipse environment. Most of
them are fairly simple to use and allow us to draw diagrams quite easily. However, the
interfaces for setting properties for our elements are not always easy to use. Some of these
only provide the standard properties view, others offer a specific interface made up of widgets
designed for inputting specific properties. These tools are therefore not particularly adapted to
the user as the interface rarely provides the ideal information.

In order to simplify the editing process for our UML models, we have imagined the possibility
of providing an ‘editing properties’ form that is configurable by the user. From the very first
prototype designed for editing UML models we realised that the concept was applicable to
any Ecore model. The MAD project, meaning Model Aggregator eDitor was then born.

MAD Specification

MAD must propose a descriptive approach of the required editing form, by associating each
property, which should be editable, with a type of widget. It must also be possible to describe
the layout of these widgets.

The MAD editing form has to be reusable immediately after its description without code
generation or compilation (runtime).

The labels on the MAD form have to be accessible to an international audience.

A validation mechanism with values entered by the user must be available before the EMF
validation. Only validated values will be applied to the edited model.

The MAD form has to be compatible with any EMF model editor to edit the properties of the
selected element.

It must be possible to edit elements from different models on the same form.

 MAD : Model Aggregator eDitor 2

MAD will have to ensure a bidirectional synchronisation between the edited model and its
editing forms. Any modifications carried out by MAD will have to be applied to the model;
the MAD form will have to update itself when the model is modified by another editor.

MAD must allow the editing of any model element even without the use of an editor. It must
be usable by any application or plugin.

Concepts

Configuring editing forms

The description of editing forms for a model is based on its Ecore metamodel. The structure
and content of a form are described as a template associated with a type of metamodel
element (EClass). The editing form for this kind of element will be built according to this
description.

A template holds all of the required widgets; each widget must be specified by, at least, its
type and a query expression which allows us to obtain the necessary value. The value of a
widget will be obtained by the evaluation of its query from the element being edited. The
reuse of pre-defined templates should be possible by inheritance and composition.

Editing and backing up

Any modification of a value by means of a widget has to be applied immediately to the
corresponding model property.

MAD handles two types of models, the main models: those that are already managed by a
model editor and those known as ‘foreign’ models which are related to the main model; they
are opened by MAD to allow them to be edited at the same time as a main model. The
modifications of these model properties are carried out in a transactional way.

The main model properties modified by MAD are only updated in memory and the editor has
to back up the model. The modification of foreign model properties implies MAD backing up
these models.

 MAD : Model Aggregator eDitor 3

Architecture

MAD is composed of three main Eclipse plug-ins :

API : com.sysord.mad
Core : com.sysord.mad.core
UI : com.sysord.mad.ui

MAD is based on a Service-Oriented Architecture. The services' interfaces are defined in the
API plug-in and all their default implementation are located in the Core. Adding or replacing
services is possible thanks to the Guice module which can be extended through the extension
point provided by the Core plug-in.

 MAD : Model Aggregator eDitor 4

Main services :

ConfigurationManager : Service for managing MAD configurations
ModelProviderService : Service providing EMF models.
ModelAccessObject : Service for reading and persisting elements in EMF models.
QueryEvaluationService : Service of query evaluation on EMF models.
WidgetFactory : Service for creating MAD widgets.
ViewBuilder : Service for creating the MAD view's content.
WidgetBuilder : Service for creating platform-specific widgets.
WidgetValueValidationService : Service of widget's value validation.

The UI plug-in uses MAD Core to create an Eclipse view with an edition form corresponding
to the configuration and the EMF element currently selected in the Eclipse environment.

Services implemented by the UI :

SWTViewBuilder : Implements the ViewBuilder to generate the SWT view.
SWTWidgetBuilder : Implements the WidgetBuilder to generate the SWT specific
widgets.

Life cycle

Implementation choices

MAD will obviously be an Eclipse plugin

Configuration

The configuration of the MAD editing forms will be defined by a dedicated model. Given the
mass of information that a configuration can involve and the expected readability, we have
opted for a textual DSL created with Xtext.

 MAD : Model Aggregator eDitor 5

http://www.sysord.com/Sysord/public/javadoc/mad.ui/com/sysord/mad/widget/SWTWidgetBuilder.html
http://www.sysord.com/Sysord/public/javadoc/mad.ui/com/sysord/mad/emitter/impl/SWTViewBuilder.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/validator/WidgetValueValidationService.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/widget/WidgetBuilder.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/emitter/ViewBuilder.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/emitter/WidgetFactory.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/evaluator/QueryEvaluationService.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/mao/ModelAccessObject.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/model/provider/ModelProviderService.html
http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/configuration/ConfigurationManager.html

From a description of the structure of a language, Xtext allows you to automatically generate
the parser as well as an Ecore model representing the language elements and the relationships
between them. It also produces an editor that is fully integrated into Eclipse and allows you to
complete and validate syntactic structure. A large number of extension points have been
developed to add a series of features to the editor such as: content assist, specific validation
rules, formatting strategies and many others. It is also possible to personalise the “text to
model” step.

We have been using Xtext for many years now and we particularly like how quickly and
easily we can create textual DSLs even if elaborating and integrating the DSL remain a
project within a project

MAD allows you to edit any Ecore model, given that its configuration is an Ecore model; it
would therefore be possible to use MAD as an editor of its own configuration

Integration into Eclipse

The graphical aspect of MAD is an Eclipse view in which the widgets are constructed on the
fly from the configuration associated with the element selected by a model editor. The widgets
are therefore SWT widgets constructed using FormToolkit.

However, MAD is capable of creating widgets other than SWT; all you need to do is provide a
personalised implementation of the services in charge of creating the graphical container for
the view and add widgets to it (ViewBuilder and WidgetBuilder).

Query evaluators

The widget values are obtained by evaluating queries from the selected element. We have
opted for OCL as the main language but there is the possibility of creating and using
personalised evaluators.

The evaluators

As it is integrated into Eclipse, compatible with Ecore and extendable, OCL seemed to be the
best choice for carrying out queries on the model.

OCL initially only provides the means to read in a model. When it is necessary to modify
properties or create or delete elements, it is possible to invoke, from OCL, dedicated
EOperations defined on the metamodel. UML provides a large number of these operations but
not all models do so. In order to carry out these types of operations we have added a
customised evaluator called MAD evaluator. It includes a set of basic functions allowing us to
create, delete and move model elements. An Acceleo query evaluator for MAD is also
available. It allows us to reference and use defined queries in the modules (.emtl) imported
into the MAD configuration. We also tried integrating EMF Query 2 but given the current
state of progress of this project, the benefits of this language did not turn out to be useful so it
was discarded.

Spying on evaluators

 MAD : Model Aggregator eDitor 6

The widgets are provided with the required values from reading queries. Any value assigned
to an editable widget can be modified by the user and, in this case, the new value will have to
be assigned to the corresponding property in the model. It is then necessary to find out which
property has provided the resulting value of the query. In order to do this we have used two
methods for ‘spying on evaluators’ and determining the origin of the results they provide.

- The first, specialised for OCL, consists in intercepting the property access methods
and gathering contextual information. It is therefore possible to obtain the property
that has been accessed and its owner. Towards the end of the evaluation a validation of
this information is carried out by comparing the result of the interception and that of
the evaluation. If these do not match, the evaluation analysis is considered invalid.
This solution has a good success rate for simple queries but is inefficient when
handling queries using model element operations or advanced OCL functions.

- The second solution is meant to be generally applicable to any evaluator; it consists in
instrumenting the basic element of the query, the context, by the dynamic proxy
mechanism. This proxy intercepts the operations invoked on the element in order to
collect the accesses to its properties; when the type of result permits, a proxy with the
same behaviour is returned. At the end of the evaluation, a validation of this analysis is
carried out. This method compensates for some of the features that are missing in the
previous solution but still present various limitations:

- Some of the ‘uninstrumentable’ types play an important role in the evaluation but are
not monitored

- The internal evaluator behaviour can result in unmonitored structures or inaccurate
results when comparing the proxies.

We are currently working on improving these solutions.

When the query evaluation analysis fails, MAD cannot determine which action to carry out to
update the value. The action can then be explicitly provided in the configuration by
associating the adapted query in UPDATE_COMMAND with the widget.

Synchronising models and views

This consists in ensuring that any changes made by MAD to a model element are immediately
taken into account by the model editing view. In the same way, any changes made by the
model editor must be applied to the MAD view.

The synchronisation of the model editor view is managed by the model editor but is not the
responsibility of MAD. In order to guarantee that the MAD view reflects the model image at
any given time we have used the adapters provided by EMF. Registered adapters on the edited
element notify MAD of any changes; the corresponding view widgets are updated.

 MAD : Model Aggregator eDitor 7

Dependency injections

MAD’s architecture is based on a set of services, each one designed to manage part of the
necessary processing flow and the view for an element that you will edit. In order to link these
services used by MAD, we have resorted to use dependency injections which ensure a loose
link between components. Each service is presented as an interface; there can be one or
several different implementations for each service. A configuration defines which
implementation will be used for all services upon execution. A MAD user can provide their
own implementation for each service.

The initial version of MAD was developed for Eclipse Indigo; for this reason, we were not
able to use the Eclipse 4 dependency injection mechanism and therefore opted for Guice.

Queries

OCL Evaluator

The OCL evaluator uses standard syntax. We added various applicable operations to all of the
elements in order to simplify query writing.

toString(context : OclAny) : String

Returns the String equivalence of the context. Behind the scenes, the Java toString() method is invoked on the

context.

rootContainer(context : OclAny) : EObject

Returns the root element of the given context's model if it's an EObject, null otherwise.

eContainer(context : OclAny) : EObject

Returns the container of the given context if it's an EObject, null otherwise.

MAD Evaluator

The MAD evaluator offers various functions for manipulating model elements.

CREATE(context:EObject, FeatureName:String, eClassName:String, container:EObject)

Creates a new element and puts it in its corresponding container. Returns the created element.

Parameters :

context : The context. If the given container is null, the context element is considered as the container.

FeatureName : The name of the feature that will contain the created element.

eClassName : The EClass' name of the element to create.

container : (optional) Container of the element to create.

 MAD : Model Aggregator eDitor 8

UPDATE_FEATURE(context:EObject, featureName:String, value:Object)

Modifies the value of an element's property.

Parameters :

context : The context of the element for which the property is modified.

featureName : The name of the feature to modify.

value: The value to set.

DELETE(context:EObject)

Deletes an element from its model. The element, all its children and all their references are deleted.

The deletion is done with EcoreUtil.delete(context, true).

REMOVE(context:EObject)

Removes an element from its container.

The removal is done with EcoreUtil.remove(context).

MOVE_UP(context:EObject), MOVE_DOWN(context:EObject)

Move, up or down, an element contained in a collection-based feature.

Query and sub-query chains

MAD queries can be made up of several queries, each written in a different language. This
kind of query writing allows us to combine the functions of the different evaluators in order to
make the most of each one and simplify complex query making.

Elementary query

A simple MAD query contains the body of the query in the form of a string. The language
identifier must be provided if the query is not written in OCL.

"authors"

Returns the authors of a book. No defined language, OCL is used by default.

Language: ACCELEO call authorsOfSeveralBooks()

Call of an Acceleo query. This query returns the authors of the book who have written other books.

Language: MAD "CREATE('books')"

Call of a MAD function which creates a book element into the library.

Query chain

The MAD query chain is made up of a list of organised elementary queries. The queries are
evaluated one after another, the result of a query determining the context for evaluating the
next.

 MAD : Model Aggregator eDitor 9

Query Chain {
"books->last()",
language: ACCELEO call authorMultiBook(),
"first()"

}

Query chain with queries of different languages (OCL and Acceleo). This query chain returns the first author of
the last book in the library who wrote several books present in the library.

Sub-queries

A main query can include sub-queries which are written between square brackets. The
evaluator starts by evaluating the sub-queries from the context; the results obtained are
injected into the main queries in order to replace the sub-query.

eContainer().oclAsType(Library).books->select(pages > [pages])->isEmpty()

Returns true if the book is the one with the most pages in the library. The first 'pages' refers to the books in the
iteration. '[pages]' is evaluated before the iteration and corresponds to the number of pages of the book.

Contextual variables

In order to simplify writing queries and make them more explicit, a set of predefined variables
are available. These variables, set by MAD before the evaluation, allow us to access the view
context, the value of the edited element and other contextual information.

$UIVALUE > 10 and $UIVALUE < 10000

Validation rule of a numerical widget's value. $UIVALUE is substituted by the value written in the widget.

Customised evaluators

In order to meet specific needs, MAD allows you to create your own evaluators, reference
them in the configuration and use them for evaluating queries. A prefixed expressions parser
is available and can easily be reused by any new language.

A customised evaluator is created by realizing the interface QueryEvaluator.

MAD in action

 The first step for using MAD consists in creating a configuration in which we define the
required editing views for the model we want to edit. All we need to do is add this
configuration to the MAD preferences and that’s it, the property editor is ready. All the
configuration changes will be taken into account immediately.

 MAD : Model Aggregator eDitor 10

http://www.sysord.com/Sysord/public/javadoc/mad/com/sysord/mad/evaluator/QueryEvaluator.html

The following examples will use the ‘tinylibrary’ model which is a simplified adaptation of the
Library model.

Creation of a MAD configuration for the ‘tinylibrary’ models. At this point no editing view
has been defined.

Widgets

MAD provides a range of configurable widgets for creating customised forms.

Editing widgets:

- Entering Text, Number, Date and Boolean values

- Selecting values: Combobox, integrated or popup Lists and PickLists

- Editing Xtext model elements (using the integrated Xtext editor)

Widgets for viewing purposes: Read-only display of a calculated or elementary value.

Widgets for browsing purposes: list of proposed elements allowing direct access to their
detailed view.

Flexible widget: Displaying a list of editable elements, each represented by the set of widgets
described in its corresponding template.

 MAD : Model Aggregator eDitor 11

Composite widget: Including all the widgets of a predefined template in a given template in
order to represent a composite element for which we want to homogenise the rendering of
each of its occurrences

Command: The button for launching actions.

The range of widgets provided by MAD is fully extendable; it’s possible to modify each
original widget by creating its own implementations.

A First Configuration
//--
// MAD configuration for Tiny library model
//--

//MAD base configuration import
import "platform:/resource/mad.configuration/config.mad"

//Tiny library Ecore metamodel import
import "platform:/plugin/com.sysord.mad.demo.tinylibrary/model/tinylibrary.ecore"
//Configuration for a Book element
Configuration BOOK for tinylibrary.Book {
 template:

 //Textbox widget for editing title property
 widget:Title //the widget id
 label:"Title" //widget label
 type:TEXT_WIDGET //display a text widget
 value:"title" //Ocl query for getting the 'title' property from the book.
}

 MAD : Model Aggregator eDitor 12

Simple Widgets
Configuration BOOK for tinylibrary.Book {
 //Format expression for all Book elements Label computing
 //queries between [] are evaluated parts.
 label provider:"Book: [title]"

 template:
 ...

 //Textbox for isbn
 widget:Isbn
 label:"ISBN"
 type:TEXT_WIDGET
 value:"isbn"

 //Number input widget
 widget:Pages
 label:"Pages"
 type:NUMBER_WIDGET
 value:"pages"

 //Date input widget
 widget:PublicationDate

label:"Publication date"
type:DATE_WIDGET

 value:"published"

 //Checkbox widget
 widget:Damaged
 label:"Is damaged"
 type:BOOL_WIDGET
 value:"damaged"

}

List Widgets
 ...

//Combo widget
widget:Category
label:"Category"
type:SINGLE_SELECT_WIDGET
value:"category":tinylibrary.BookCategory
//OCL query for filling combo
candidates:"BookCategory.allInstances()"

//Popup PickList widget
widget:Authors
//Dynamic label value
label:"[authors->size()] authors"
type:MULTI_SELECT_WIDGET:POPUP_PICKLIST
value:"authors"
//Populate the list with candidates query results
candidates:"eContainer().oclAsType(Library).writers"
item label:"[name]"

Navigation Widget
//Configuration for the Library element
Configuration LIBRARY for tinylibrary.Library {

template:
//Navigation widget for accessing Book detail
widget:BooksNavigation
label:"Books"
type:NAVIGATION_WIDGET
candidates:"books"

}

The navigation widget proposes a list of elements. A double-click on one of them allows to
navigate toward the detailed view of this element. The left arrow allows to go back to the
previous view.

 MAD : Model Aggregator eDitor 13

Widget for displaying Read-Only values
Configuration BOOK for tinylibrary.Book {

 ...
//Output text
widget:avgPage
label:"Pages by author"
type:OUTPUTTEXT_WIDGET
//conditional visibility
visible when:"not authors->isEmpty()"
//Compute pages average by author.
value:"(pages / authors->size())"
//value converter from double to string.
valueConverter:DOUBLE

}

Flexible Widget
//Configuration for a person element (abstract)
Configuration Abstract_PERSON for tinylibrary.Person {

label provider:"[name]"
template:

widget:Name
label:"Name"
type:TEXT_WIDGET
value:"name"

widget:FirstName
label:"First name"
type:TEXT_WIDGET
value:"firstName"

widget:LastName
label:"Last name"
type:TEXT_WIDGET
value:"lastName"

}

//Configuration for a Writer element
//extends implicitly Person configuration
Configuration WRITER for tinylibrary.Writer {

template:

widget:Books
label:"Books"
type:FLEXIBLE_WIDGET
//include Book template for each writen book
value:"books"

}

Selection of a specified template for the flexible widget elements
//Alternative configuration for a Book element
Configuration BOOK_SHORT for tinylibrary.Book {

//Explicit extension
extends: BOOK //Reuse the BOOK template
template:
//Display only those widgets
layout: Isbn Title

}

Configuration WRITER for tinylibrary.Writer {
template:

widget:Books
label:"Books"
type:FLEXIBLE_WIDGET
//Use the BOOK_SHORT template
flexible template: BOOK_SHORT
value:"books"

}

 MAD : Model Aggregator eDitor 14

Widget Command
//Icon declaration
Use icon DELETE_ICON URI:"platform:/resource/mad.configuration/icons/delete-icon_16.png"

//Shared command declaration
Common Command DELETE_ELEMENT_COMMAND {

ITEM_COMMAND
"Delete item" //Command label
icon:DELETE_ICON //Image for the command button
//launch the DELETE MAD Macro for deleting selected item
action: language:MAD "DELETE()"
on success: Reload view

}

Configuration LIBRARY for tinylibrary.Library {

template:
widget:BooksNavigation
label:"Books"
type:NAVIGATION_WIDGET
candidates:"books"
commands:

//Inner command for creating a new book
GLOBAL_COMMAND "New Book"
action: language:MAD "CREATE([OCL:'books'])"
//after creation displays view
//for the created item: the command RESULT.
on success: Display view for "$RESULT",
//Use shared command with label override
DELETE_ELEMENT_COMMAND("Delete the selected book.")

}

Other widgets

Xtext editor

The Xtext editor widget allows you to add integrated editors to the MAD view in order to
modify Xtext model elements using completion and validation.

Developing this widget caused us a few problems due to the way that Xtext functions. Any
modification in the text will launch the parser and reconstruct the entire branch of the
impacted model. For this reason, it is not worth keeping references or placing Adapters on
Xtext model elements for which the sub-elements are likely to change as these references can
become obsolete. Modifying either of the texts in the above example deletes the other’s
model. Keeping a copy of the edited element in memory as well as its URI should a
modification merge occur seems to be a good compromise. However, if the element’s URI is
not based on a unique identifier or if there has to be links (references, validation rules)
between the two elements, editing or merging will not be carried out correctly. It is therefore
necessary to reload all the potentially impacted Xtext widgets found on the view when one of
them modifies the model.

 MAD : Model Aggregator eDitor 15

Html link and Google MAP widgets

These widgets have been designed by customising the OUTPUTTEXT_WIDGET. Their
detailed configuration is presented in a video of the first version of MAD:
MAD is Customizable

Layout
//tab declaration
UI Tab {

id:WRITEN_BOOKS
label:"Writen books"

}

Configuration WRITER for tinylibrary.Writer {
template:

widget:Books
//the widget will be diplayed on the WRITEN_BOOKS tab
tab:WRITEN_BOOKS
label:"Books"
type:FLEXIBLE_WIDGET

flexible template: BOOK_SHORT
value:"books"

//widgets display order definition
layout: LastName FirstName Name Books

}

Validators
Configuration BOOK for tinylibrary.Book {

 …

//Number input widget
widget:Pages
label:"Pages"
type:NUMBER_WIDGET
value:"pages"
validators:
//Validation: pages widget must be filled
//and its value between 10 and 10000
validation rule:"not $UIVALUE.oclIsUndefined()"

I18N Error message:"REQUIRED_VALUE"
validation rule:"$UIVALUE > 10 and $UIVALUE <

10000"
I18N Error message:"VALUE_OUT_OF_RANGE[10]

[10000]"
 …

}

Validation rules placed on the widgets can verify the conformity of the values before updating
the model.

 MAD : Model Aggregator eDitor 16

http://youtu.be/2NTAP--Hi1I

Layers

The layers allow you to collect and select the widgets that you want to display depending on a
particular theme. These are useful as they allow you to gather the widgets with information
from the same domain. These layers are stackable and hierarchical. They allow you to refine
the view according to the user’s requirements.

//Layers configuration
Layer INFO_LAYER {

label:"All Information"
Sub layers {

Layer BASIC {label:"Basic information"}
Layer DETAILED{label:"Additional

information"}
}

}
Layer STATISTICS_LAYER {

label:"Statistics"
Sub layers {

Layer AUTHOR{label:"Authors statistics"}
Layer BOOKS{label:"Books statistics"}

}
}
Configuration BOOK_SHORT for tinylibrary.Book {

...
widget:Pages
//available in books statistics layers
layers: STATISTICS_LAYER.BOOKS
...
//Output text
widget:avgPage
//available in the two layers
layers:STATISTICS_LAYER.BOOKS,

STATISTICS_LAYER.AUTHOR
label:"Pages by author"
...

}

I18N

MAD supports internationalisation by using Eclipse NLS features (National Language
Support). The translations are stored in properties files for each locale; a symbolic name is
assigned to a translation in the target locale. In the MAD configuration, calculated or
elementary texts that we want to translate are preceded by the I18N keyword and their value
contains the symbolic name for the required translation followed by queries (optional)
designed to calculate and provide the variable parts (parameters) of the translation. MAD
provides translated labels for the system’s default locale. All the MAD configuration labels
are internationalisable.

Utility of MAD and use cases

MAD allows personalised editing for any Ecore model; it is therefore a tool that can be used
in all MDE and MDA approaches applied in the Eclipse environment. The creation and
maintenance of models is a very important task that has to be carried out with maximum user
comfort. MAD improves the user’s experience by providing them with editors adapted to their
needs or a complement to the modelers and editors that they use.

Thanks to its dynamic aspect, MAD can allow the rapid creation of a user interface by
following the user’s instructions. This kind of design shares many similarities with the RAD
(Rapid Application Development) approach in which a user describes their needs; the
designer configures a generator and the result is immediately evaluated by the user. Through
rapid iterations, the user obtains the expected product. With MAD there is no generation
phase; any configuration modification is immediately visible.

 MAD : Model Aggregator eDitor 17

The user describes their ideal interface. The designer only needs to have a basic knowledge of
how to write queries and a good knowledge of the target model. The designer configures
MAD according to the description of the user’s needs; the user immediately sees the result,
gives feedback and either agrees on the result or asks further modifications.

Another useful MAD feature allows you to create an identical editing mode for a single
element, whatever the modeler or model editor. Thus, editing a UML element with the Eclipse
UML model editor, Papyrus or UML designer will be easier as all three are highly similar,
which will also reduce the adaptation time for the user to get started on a new modeler.

MAD allows you to simultaneously edit elements that come from several different models; it
is fully adapted for model extension or decoration. A main model holds the main information
for the edited domain; a complementary model holds additional information which is needed
for specific uses. MAD allows you to aggregate this information on a given editing view and
modify or simultaneously consult the two models. Using layers allows you to refine the view
following this merge.

When carrying out a decoration, for each element of the main model there is usually a
corresponding counterpart in the decorator model. One of the underlying issues with this type
of editing is the need to synchronise the two models: creating any element that you want to
decorate in the main model implies creating its counterpart in the decorator model. MAD
offers dedicated services for simplifying model extension and decoration.

ModelExtensionManager is a service used by the MAD_EXTENSION query language.
MAD_EXTENSION allows you to write queries to retrieve, from the decorator or extension
model, the element which corresponds with a main model element. All you need to do is
provide an implementation of the ModelExtensionManager interface which implements the
correspondence strategy that you need to adopt to establish a link between a main model and
an extension or decorator model.

ExtensionModelSynchroniser is a service used for synchronising the main model with an
extension model. This is a main model observer which monitors all element creation and
deletion and uses the ModelExtensionManager to transmit and apply modifications to the
extension model. The implementations to use for a model are defined in the MAD
configuration.

(video demos: Family Model Extension, MAD with Xtext)

Finally, MAD is extendable and open; it allows you to easily adapt to new needs as soon as
they are identified, either by configuration or extension: integration or development of new
specific query languages, creation of personalised view generators and widgets for a new
graphical environment, reuse of the MAD core through applications.

 MAD : Model Aggregator eDitor 18

http://youtu.be/ShoLi5XoQOw
http://youtu.be/UENSyxBZDK4

Conclusion

MAD is now operational; we use it internally at Sysord for designing and editing all of our
models and more specifically for UML models used as input for application generators (demo
video: MAD with UML). A number of evolutions, including a query compiler, are currently
being developed to improve the performance of MAD and make it easier for users to
configure. We are also planning on developing many others in the future:

- Integration of CDO in order to manage the multiuser mode and concurrent access

- MAD configuration generator: from a selected element for which no template has
been defined, a button allows you to produce a default description through element
introspection and automatically add it to the current configuration.

- Possibility of creating commands which invoke Java methods through reflection.

- MAD editor generator: from a tried and tested configuration in interpreted use,
generation of an Eclipse plugin

- Editing multimedia elements (sound, image, video, charts, graphs, ...)

- Configuration environment that provides wizards for creating queries

- Using Eclipse 4 and why not JavaFX features

 MAD : Model Aggregator eDitor 19

http://youtu.be/ACFS6ajAsV8

	MAD : Model Aggregator eDitor
	Motivations
	MAD Specification
	Concepts
	Configuring editing forms
	Editing and backing up

	Architecture
	Life cycle

	Implementation choices
	Configuration

	Integration into Eclipse
	Query evaluators
	Synchronising models and views
	Dependency injections

	Queries
	OCL Evaluator
	MAD Evaluator
	Query and sub-query chains
	Elementary query
	Query chain
	Sub-queries
	Contextual variables
	Customised evaluators

	MAD in action
	Widgets
	A First Configuration
	Simple Widgets
	List Widgets
	Navigation Widget
	Widget for displaying Read-Only values
	Flexible Widget
	Selection of a specified template for the flexible widget elements
	Widget Command
	Other widgets
	Xtext editor
	Html link and Google MAP widgets

	Layout
	Validators

	Layers
	I18N
	Utility of MAD and use cases
	Conclusion

